dubbo是如何控制并发数和限流的?
- Dubbo
- 时间:2021-08-20 09:00
- 6585人已阅读
简介
ExecuteLimitFilterExecuteLimitFilter,在服务提供者,通过的"executes"统一配置项开启:表示每服务的每方法最大可并行执行请求数。ExecuteLimitFilter是通过信号量来实现的对服务端的并发数的控制。ExecuteLimitFilter执行流程:1:首先会去获得服务提供者每服务每方法最大可并行执行请求数2:如果每服务每方法最大可
🔔🔔🔔好消息!好消息!🔔🔔🔔
有需要的朋友👉:联系凯哥
ExecuteLimitFilter
1:首先会去获得服务提供者每服务每方法最大可并行执行请求数
2:如果每服务每方法最大可并行执行请求数大于零,那么就基于基于服务 URL + 方法维度获取一个RpcStatus实例
3:通过RpcStatus实例获取一个信号量,若果获取的这个信号量调用tryAcquire返回false,则抛出异常
4:如果没有抛异常,那么久调用RpcStatus静态方法beginCount,给这个 URL + 方法维度开始计数
5:调用服务
6:调用结束后计数调用RpcStatus静态方法endCount,计数结束
7:释放信号量
ExecuteLimitFilter源码如下:
@Override public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException { URL url = invoker.getUrl(); String methodName = invocation.getMethodName(); Semaphore executesLimit = null; boolean acquireResult = false; int max = url.getMethodParameter(methodName, Constants.EXECUTES_KEY, 0); if (max > 0) { RpcStatus count = RpcStatus.getStatus(url, invocation.getMethodName()); // if (count.getActive() >= max) { /** * http://manzhizhen.iteye.com/blog/2386408 * use semaphore for concurrency control (to limit thread number) */ executesLimit = count.getSemaphore(max); if(executesLimit != null && !(acquireResult = executesLimit.tryAcquire())) { throw new RpcException("Failed to invoke method " + invocation.getMethodName() + " in provider " + url + ", cause: The service using threads greater than <dubbo:service executes=\"" + max + "\" /> limited."); } } long begin = System.currentTimeMillis(); boolean isSuccess = true; RpcStatus.beginCount(url, methodName); try { Result result = invoker.invoke(invocation); return result; } catch (Throwable t) { isSuccess = false; if (t instanceof RuntimeException) { throw (RuntimeException) t; } else { throw new RpcException("unexpected exception when ExecuteLimitFilter", t); } } finally { RpcStatus.endCount(url, methodName, System.currentTimeMillis() - begin, isSuccess); if(acquireResult) { executesLimit.release(); } } }
private static final ConcurrentMap<String, ConcurrentMap<String, RpcStatus>> METHOD_STATISTICS = new ConcurrentHashMap<String, ConcurrentMap<String, RpcStatus>>(); public static RpcStatus getStatus(URL url, String methodName) { String uri = url.toIdentityString(); ConcurrentMap<String, RpcStatus> map = METHOD_STATISTICS.get(uri); if (map == null) { METHOD_STATISTICS.putIfAbsent(uri, new ConcurrentHashMap<String, RpcStatus>()); map = METHOD_STATISTICS.get(uri); } RpcStatus status = map.get(methodName); if (status == null) { map.putIfAbsent(methodName, new RpcStatus()); status = map.get(methodName); } return status; }
private volatile int executesPermits; public Semaphore getSemaphore(int maxThreadNum) { if(maxThreadNum <= 0) { return null; } if (executesLimit == null || executesPermits != maxThreadNum) { synchronized (this) { if (executesLimit == null || executesPermits != maxThreadNum) { executesLimit = new Semaphore(maxThreadNum); executesPermits = maxThreadNum; } } } return executesLimit; }
TPSLimiter
1:通过 配置项,添加到 或 或 中开启,例如:
dubbo:service interface="com.alibaba.dubbo.demo.DemoService" ref="demoServiceImpl" protocol="injvm" > <dubbo:parameter key="tps" value="100" /> </dubbo:service>
通过 配置项,设置 TPS 周期。
源码分析
private final TPSLimiter tpsLimiter = new DefaultTPSLimiter(); @Override public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException { if (!tpsLimiter.isAllowable(invoker.getUrl(), invocation)) { throw new RpcException( "Failed to invoke service " + invoker.getInterface().getName() + "." + invocation.getMethodName() + " because exceed max service tps."); } return invoker.invoke(invocation); }
private final ConcurrentMap<String, StatItem> stats = new ConcurrentHashMap<String, StatItem>(); @Override public boolean isAllowable(URL url, Invocation invocation) { //获取tps这个参数设置的大小 int rate = url.getParameter(Constants.TPS_LIMIT_RATE_KEY, -1); //获取tps.interval这个参数设置的大小,默认60秒 long interval = url.getParameter(Constants.TPS_LIMIT_INTERVAL_KEY, Constants.DEFAULT_TPS_LIMIT_INTERVAL); String serviceKey = url.getServiceKey(); if (rate > 0) { StatItem statItem = stats.get(serviceKey); if (statItem == null) { stats.putIfAbsent(serviceKey, new StatItem(serviceKey, rate, interval)); statItem = stats.get(serviceKey); } return statItem.isAllowable(); } else { StatItem statItem = stats.get(serviceKey); if (statItem != null) { stats.remove(serviceKey); } } return true; }
private long lastResetTime; private long interval; private AtomicInteger token; private int rate; public boolean isAllowable() { long now = System.currentTimeMillis(); // 若到达下一个周期,恢复可用种子数,设置最后重置时间。 if (now > lastResetTime + interval) { token.set(rate);// 回复可用种子数 lastResetTime = now;// 最后重置时间 } // CAS ,直到或得到一个种子,或者没有足够种子 int value = token.get(); boolean flag = false; while (value > 0 && !flag) { flag = token.compareAndSet(value, value - 1); value = token.get(); } return flag; }
dubbo 并发控制 和 连接控制
并发控制
<dubbo:service interface="com.foo.BarService" executes="10" />
<dubbo:service interface="com.foo.BarService"> <dubbo:method name="sayHello" executes="10" /> </dubbo:service>
<dubbo:service interface="com.foo.BarService" actives="10" />
<dubbo:reference interface="com.foo.BarService" loadbalance="leastactive" />
连接控制
<dubbo:reference interface="com.foo.BarService" connections="10" />
下一篇: 项目中常用的19条MySQL优化技巧