java分布式事务——seata,tcc解决方案总结!

  • 作者: 凯哥Java(公众号:凯哥Java)
  • 分布式相关
  • 时间:2022-11-02 20:42
  • 4816人已阅读
简介 分布式事务基础理论我们了解到了分布式事务的基础概念。与本地事务不同的是,分布式系统之所以叫分布式,是因为提供服务的各个节点分布在不同机器上,相互之间通过网络交互。不能因为有一点网络问题就导致整个系统无法提供服务,网络因素成为了分布式事务的考量标准之一。因此,分布式事务需要更进一步的理论支持,接下来,我们先来学习一下分布式事务的CAP理论。1.1.CAP理论CAP是Consistency、Avail

🔔🔔好消息!好消息!🔔🔔

 如果您需要注册ChatGPT,想要升级ChatGPT4。凯哥可以代注册ChatGPT账号代升级ChatGPT4

有需要的朋友👉:微信号 kaigejava2022

  1. 分布式事务基础理论

我们了解到了分布式事务的基础概念。与本地事务不同的是,分布式系统之所以叫分布式,是因为提供服务的各个节点分布在不同机器上,相互之间通过网络交互。不能因为有一点网络问题就导致整个系统无法提供服务,网络因素成为了分布式事务的考量标准之一。因此,分布式事务需要更进一步的理论支持,接下来,我们先来学习一下分布式事务的CAP理论。

1.1.CAP理论

CAP是 Consistency、Availability、Partition tolerance三个词语的缩写,分别表示一致性、可用性、分区容忍性。

1.2.BASE理论

 1、理解强一致性和最终一致性

 CAP理论告诉我们一个分布式系统最多只能同时满足一致性(Consistency)、可用性(Availability)和分区容忍性(Partition tolerance)这三项中的两项,其中AP在实际应用中较多,AP即舍弃一致性,保证可用性和分区容忍性,但是在实际生产中很多场景都要实现一致性,比如前边我们举的例子主数据库向从数据库同步数据,即使不要一致性,但是最终也要将数据同步成功来保证数据一致,这种一致性和CAP中的一致性不同,CAP中的一致性要求在任何时间查询每个结点数据都必须一致,它强调的是强一致性,但是最终一致性是允许可以在一段时间内每个结点的数据不一致,但是经过一段时间每个结点的数据必须一致,它强调的是最终数据的一致性。

 2、Base理论介绍

 BASE 是 Basically Available(基本可用)、Soft state(软状态)和 Eventually consistent (最终一致性)三个短语的缩写。BASE理论是对CAP中AP的一个扩展,通过牺牲强一致性来获得可用性,当出现故障允许部分不可用但要保证核心功能可用,允许数据在一段时间内是不一致的,但最终达到一致状态。满足BASE理论的事务,我们称之为“柔性事务”。

2.分布式事务解决方案之2PC(两阶段提交) 

前面已经学习了分布式事务的基础理论,以理论为基础,针对不同的分布式场景业界常见的解决方案有2PC、TCC、可靠消息最终一致性、最大努力通知这几种。

2.1.什么是2PC

    2PC即两阶段提交协议,是将整个事务流程分为两个阶段,准备阶段(Prepare phase)、提交阶段(commitphase),2是指两个阶段,P是指准备阶段,C是指提交阶段。

举例:张三和李四好久不见,老友约起聚餐,饭店老板要求先买单,才能出票。这时张三和李四分别抱怨近况不如意,囊中羞涩,都不愿意请客,这时只能AA。只有张三和李四都付款,老板才能出票安排就餐。但由于张三和李四都是铁公鸡,形成了尴尬的一幕:

    准备阶段:老板要求张三付款,张三付款。老板要求李四付款,李四付款。

    提交阶段:老板出票,两人拿票纷纷落座就餐。

    例子中形成了一个事务,若张三或李四其中一人拒绝付款,或钱不够,店老板都不会给出票,并且会把已收款退回。整个事务过程由事务管理器和参与者组成,店老板就是事务管理器,张三、李四就是事务参与者,事务管理器负责决策整个分布式事务的提交和回滚,事务参与者负责自己本地事务的提交和回滚。

在计算机中部分关系数据库如Oracle、MySQL支持两阶段提交协议,如下图:

    1. 准备阶段(Prepare phase):事务管理器给每个参与者发送Prepare消息,每个数据库参与者在本地执行事务,并写本地的Undo/Redo日志,此时事务没有提交。(Undo日志是记录修改前的数据,用于数据库回滚,Redo日志是记录修改后的数据,用于提交事务后写入数据文件)

    2. 提交阶段(commit phase):如果事务管理器收到了参与者的执行失败或者超时消息时,直接给每个参与者发送回滚(Rollback)消息;否则,发送提交(Commit)消息;参与者根据事务管理器的指令执行提交或者回滚操作,并释放事务处理过程中使用的锁资源。注意:必须在最后阶段释放锁资源。

下图展示了2PC的两个阶段,分成功和失败两个情况说明:

   成功情况:

eec24ef984668322d7ad1807515a9240.png

失败情况:

a35bf6007d63aa3708622168318b10e7.png

2.2.1 XA方案

    2PC的传统方案是在数据库层面实现的,如Oracle、MySQL都支持2PC协议,为了统一标准减少行业内不必要的对接成本,需要制定标准化的处理模型及接口标准,国际开放标准组织Open Group定义了分布式事务处理模型DTP(Distributed Transaction Processing Reference Model)。为了让大家更明确XA方案的内容程,下面新用户注册送积分为例来说明:

114245a784b4eece4f99e97d1853c7fd.png

执行流程如下:

  1、应用程序(AP)持有用户库和积分库两个数据源。

  2、应用程序(AP)通过TM通知用户库RM新增用户,同时通知积分库RM为该用户新增积分,RM此时并未提交事务,此时用户和积分资源锁定。

  3、TM收到执行回复,只要有一方失败则分别向其他RM发起回滚事务,回滚完毕,资源锁释放。

  4、TM收到执行回复,全部成功,此时向所有RM发起提交事务,提交完毕,资源锁释放。


DTP模型定义如下角色:

    AP(Application Program):即应用程序,可以理解为使用DTP分布式事务的程序。

    RM(Resource Manager):即资源管理器,可以理解为事务的参与者,一般情况下是指一个数据库实例,通过资源管理器对该数据库进行控制,资源管理器控制着分支事务。

   TM(Transaction Manager):事务管理器,负责协调和管理事务,事务管理器控制着全局事务,管理事务生命周期,并协调各个RM。全局事务是指分布式事务处理环境中,需要操作多个数据库共同完成一个工作,这个工作即是一个全局事务。

   DTP模型定义TM和RM之间通讯的接口规范叫XA,简单理解为数据库提供的2PC接口协议,基于数据库的XA

   协议来实现2PC又称为XA方案。


  以上三个角色之间的交互方式如下:

    1)TM向AP提供 应用程序编程接口,AP通过TM提交及回滚事务。

    2)TM交易中间件通过XA接口来通知RM数据库事务的开始、结束以及提交、回滚等。

总结:

  整个2PC的事务流程涉及到三个角色AP、RM、TM。AP指的是使用2PC分布式事务的应用程序;RM指的是资源管理器,它控制着分支事务;TM指的是事务管理器,它控制着整个全局事务。

 XA方案的问题:
  1、需要本地数据库支持XA协议。
  2、资源锁需要等到两个阶段结束才释放,性能较差。

2.2.2 Seata方案

  Seata的设计目标其一是对业务无侵入,因此从业务无侵入的2PC方案着手,在传统2PC的基础上演进,并解决2PC方案面临的问题。

  Seata把一个分布式事务理解成一个包含了若干分支事务的全局事务。全局事务的职责是协调其下管辖的分支事务达成一致,要么一起成功提交,要么一起失败回滚。此外,通常分支事务本身就是一个关系数据库的本地事务,下图是全局事务与分支事务的关系图:

2b4a39e2cc2550cc6375723af3a8e285.png

还拿新用户注册送积分举例Seata的分布式事务过程: 

b718b7c75d48f49069ecfd2925389031.png

具体的执行流程如下:

  1. 用户服务的 TM 向 TC 申请开启一个全局事务,全局事务创建成功并生成一个全局唯一的XID。

  2. 用户服务的 RM 向 TC 注册 分支事务,该分支事务在用户服务执行新增用户逻辑,并将其纳入 XID 对应全局事务的管辖。

  3. 用户服务执行分支事务,向用户表插入一条记录。

  4. 逻辑执行到远程调用积分服务时(XID 在微服务调用链路的上下文中传播)。积分服务的RM 向 TC 注册分支事务,该分支事务执行增加积分的逻辑,并将其纳入 XID 对应全局事务的管辖。

  5. 积分服务执行分支事务,向积分记录表插入一条记录,执行完毕后,返回用户服务。

  6. 用户服务分支事务执行完毕。

  7. TM 向 TC 发起针对 XID 的全局提交或回滚决议。

  8. TC 调度 XID 下管辖的全部分支事务完成提交或回滚请求。

Seata实现2PC与传统2PC的差别:

   架构层次方面,传统2PC方案的 RM 实际上是在数据库层,RM 本质上就是数据库自身,通过 XA 协议实现,而Seata的 RM 是以jar包的形式作为中间件层部署在应用程序这一侧的。两阶段提交方面,传统2PC无论第二阶段的决议是commit还是rollback,事务性资源的锁都要保持到Phase2完成才释放。而Seata的做法是在Phase1 就将本地事务提交,这样就可以省去Phase2持锁的时间,整体提高效率。


2.2.3分布式事务解决方案之TCC 

 TCC是Try、Confirm、Cancel三个词语的缩写,TCC要求每个分支事务实现三个操作:预处理Try、确认Confirm、撤销Cancel。Try操作做业务检查及资源预留,Confirm做业务确认操作,Cancel实现一个与Try相反的操作即回滚操作。TM首先发起所有的分支事务的try操作,任何一个分支事务的try操作执行失败,TM将会发起所有分支事务的Cancel操作,若try操作全部成功,TM将会发起所有分支事务的Confirm操作,其中Confirm/Cancel操作若执行失败,TM会进行重试。 

cf54fd9ea6c88c63555e5a68f0dc2b27.png


TCC分为三个阶段:

    1. Try 阶段是做业务检查(一致性)及资源预留(隔离),此阶段仅是一个初步操作,它和后续的Confirm 一起才能真正构成一个完整的业务逻辑。

    2. Confirm 阶段是做确认提交,Try阶段所有分支事务执行成功后开始执行 Confirm。通常情况下,采用TCC则认为 Confirm阶段是不会出错的。即:只要Try成功,Confirm一定成功。若Confirm阶段真的出错了,需引入重试机制或人工处理。

    3. Cancel 阶段是在业务执行错误需要回滚的状态下执行分支事务的业务取消,预留资源释放。通常情况下,采用TCC则认为Cancel阶段也是一定成功的。若Cancel阶段真的出错了,需引入重试机制或人工处理。

    4. TM事务管理器

    TM事务管理器可以实现为独立的服务,也可以让全局事务发起方充当TM的角色,TM独立出来是为了成为公用组件,是为了考虑系统结构和软件复用。TM在发起全局事务时生成全局事务记录,全局事务ID贯穿整个分布式事务调用链条,用来记录事务上下文,追踪和记录状态,由于Confirm 和cancel失败需进行重试,因此需要实现为幂等,幂等性是指同一个操作无论请求多少次,其结果都相同。 


TCC需要注意三种异常处理分别是空回滚、幂等、悬挂:

  空回滚:

    在没有调用 TCC 资源 Try 方法的情况下,调用了二阶段的 Cancel 方法,Cancel 方法需要识别出这是一个空回滚,然后直接返回成功。出现原因是当一个分支事务所在服务宕机或网络异常,分支事务调用记录为失败,这个时候其实是没有执行Try阶段,当故障恢复后,分布式事务进行回滚则会调用二阶段的Cancel方法,从而形成空回滚。解决思路是关键就是要识别出这个空回滚。思路很简单就是需要知道一阶段是否执行,如果执行了,那就是正常回滚;如果没执行,那就是空回滚。前面已经说过TM在发起全局事务时生成全局事务记录,全局事务ID贯穿整个分布式事务调用链条。再额外增加一张分支事务记录表,其中有全局事务 ID 和分支事务 ID,第一阶段 Try 方法里会插入一条记录,表示一阶段执行了。Cancel 接口里读取该记录,如果该记录存在,则正常回滚;如果该记录不存在,则是空回滚。

  幂等:

    通过前面介绍已经了解到,为了保证TCC二阶段提交重试机制不会引发数据不一致,要求 TCC 的二阶段 Try、Confirm 和 Cancel 接口保证幂等,这样不会重复使用或者释放资源。如果幂等控制没有做好,很有可能导致数据不一致等严重问题。解决思路在上述“分支事务记录”中增加执行状态,每次执行前都查询该状态。

  悬挂:

    悬挂就是对于一个分布式事务,其二阶段 Cancel 接口比 Try 接口先执行。出现原因是在 RPC 调用分支事务try时,先注册分支事务,再执行RPC调用,如果此时 RPC 调用的网络发生拥堵,通常 RPC 调用是有超时时间的,RPC 超时以后,TM就会通知RM回滚该分布式事务,可能回滚完成后,RPC 请求才到达参与者真正执行,而一个 Try 方法预留的业务资源,只有该分布式事务才能使用,该分布式事务第一阶段预留的业务资源就再也没有人能够处理了,对于这种情况,我们就称为悬挂,即业务资源预留后没法继续处理。解决思路是如果二阶段执行完成,那一阶段就不能再继续执行。在执行一阶段事务时判断在该全局事务下,“分支事务记录”表中是否已经有二阶段事务记录,如果有则不执行Try。

举例,场景为 A 转账 30 元给 B,A和B账户在不同的服务。
  方案1:
  账户A

try:
检查余额是否够30元    
扣减30元    
   
confirm:
空    
cancel:
增加30元

  账户B

try:
增加30元    
confirm:
空    
cancel:
减少30元

 方案1说明:

    1)账户A,这里的余额就是所谓的业务资源,按照前面提到的原则,在第一阶段需要检查并预留业务资源,因此,我们在扣钱 TCC 资源的 Try 接口里先检查 A 账户余额是否足够,如果足够则扣除 30 元。 Confirm 接口表示正式提交,由于业务资源已经在 Try 接口里扣除掉了,那么在第二阶段的 Confirm 接口里可以什么都不用做。Cancel接口的执行表示整个事务回滚,账户A回滚则需要把 Try 接口里扣除掉的 30 元还给账户。

    2)账号B,在第一阶段 Try 接口里实现给账户B加钱,Cancel 接口的执行表示整个事务回滚,账户B回滚则需要把Try 接口里加的 30 元再减去。

  方案1的问题分析:

    1)如果账户A的try没有执行在cancel则就多加了30元。

    2)由于try,cancel、confirm都是由单独的线程去调用,且会出现重复调用,所以都需要实现幂等。

    3)账号B在try中增加30元,当try执行完成后可能会其它线程给消费了。

    4)如果账户B的try没有执行在cancel则就多减了30元。


  问题解决:

    1)账户A的cancel方法需要判断try方法是否执行,正常执行try后方可执行cancel。

    2)try,cancel、confirm方法实现幂等。

    3)账号B在try方法中不允许更新账户金额,在confirm中更新账户金额。

    4)账户B的cancel方法需要判断try方法是否执行,正常执行try后方可执行cancel。

优化方案:

  账户A

try:
try幂等校验    
try悬挂处理    
检查余额是否够30元    
扣减30元    
confirm:
空    
cancel:
cancel幂等校验    
cancel空回滚处理    
增加可用余额30元

  账户B

try:
空    
confirm:
confirm幂等校验    
正式增加30元    
cancel:
空


源码地址:https://github.com/kaixuanzhang123/dtx.git


TopTop