面试被问Redis和zk两种分布式锁的对比

  • 作者: 凯哥Java(公众号:凯哥Java)
  • 分布式事务
  • 时间:2021-08-12 22:25
  • 4763人已阅读
简介 一、基于数据库实现分布式锁1.悲观锁利用select…where…forupdate 排他锁注意:其他附加功能与实现一基本一致,这里需要注意的是“wherename=lock”,name字段必须要走索引,否则会锁表。有些情况下,比如表不大,mysql优化器会不走这个索引,导致锁表问题。2.乐观锁所谓乐观锁与前边最大区别在于基于CAS思想,是不具有互斥性,不会产生锁等待而消耗资源,操作过程

🔔🔔🔔好消息!好消息!🔔🔔🔔

有需要的朋友👉:联系凯哥 微信号 kaigejava2022

一、基于数据库实现分布式锁

1. 悲观锁

利用select … where … for update 排他锁

注意: 其他附加功能与实现一基本一致,这里需要注意的是“where name=lock ”,name字段必须要走索引,否则会锁表。有些情况下,比如表不大,mysql优化器会不走这个索引,导致锁表问题。

2. 乐观锁

所谓乐观锁与前边最大区别在于基于CAS思想,是不具有互斥性,不会产生锁等待而消耗资源,操作过程中认为不存在并发冲突,只有update version失败后才能觉察到。

我们的抢购、秒杀就是用了这种实现以防止超卖。

通过增加递增的版本号字段实现乐观锁

二、基于缓存(Redis等)实现分布式锁

1、官方叫做 RedLock 算法,是 redis 官方支持的分布式锁算法。

这个分布式锁有 3 个重要的考量点:

  • 1.互斥(只能有一个客户端获取锁)

  • 2.不能死锁

  • 3.容错(只要大部分 redis 节点创建了这把锁就可以)

2、下面是redis分布式锁的各种实现方式和缺点,按照时间的发展排序

1、直接setnx

直接利用setnx,执行完业务逻辑后调用del释放锁,简单粗暴

缺点:如果setnx成功,还没来得及释放,服务挂了,那么这个key永远都不会被获取到

2、setnx设置一个过期时间

为了改正第一个方法的缺陷,我们用setnx获取锁,然后用expire对其设置一个过期时间,如果服务挂了,过期时间一到自动释放

缺点:setnx和expire是两个方法,不能保证原子性,如果在setnx之后,还没来得及expire,服务挂了,还是会出现锁不释放的问题

3、set nx px

redis官方为了解决第二种方式存在的缺点,在2.8版本为set指令添加了扩展参数nx和ex,保证了setnx+expire的原子性,使用方法:set key value ex 5 nx

缺点:

  • 如果在过期时间内,事务还没有执行完,锁提前被自动释放,其他的线程还是可以拿到锁

  • 上面所说的那个缺点还会导致当前的线程释放其他线程占有的锁

4、加一个事务id

上面所说的第一个缺点,没有特别好的解决方法,只能把过期时间尽量设置的长一点,并且最好不要执行耗时任务

第二个缺点,可以理解为当前线程有可能会释放其他线程的锁,那么问题就转换为保证线程只能释放当前线程持有的锁。

即setnx的时候将value设为任务的唯一id,释放的时候先get key比较一下value是否与当前的id相同,是则释放,否则抛异常回滚,其实也是变相地解决了第一个问题

缺点:get key和将value与id比较是两个步骤,不能保证原子性

5、set nx px + 事务id + lua

我们可以用lua来写一个getkey并比较的脚本,jedis/luttce/redisson对lua脚本都有很好的支持

缺点:集群环境下,对master节点申请了分布式锁,由于redis的主从同步是异步进行的,master在内存中写入了nx之后直接返回,客户端获取锁成功。

此时master节点挂了,并且数据还没来得及同步,另一个节点被升级为master,这样其他的线程依然可以获取锁。

6、redlock

为了解决上面提到的redis集群中的分布式锁问题,redis的作者antirez的提出了red lock的概念,假设集群中所有的n个master节点完全独立,并且没有主从同步。

此时对所有的节点都去setnx,并且设置一个请求过期时间re和锁的过期时间le,同时re必须小于le(可以理解,不然请求3秒才拿到锁,而锁的过期时间只有1秒也太蠢了)。

此时如果有n / 2 + 1个节点成功拿到锁,此次分布式锁就算申请成功。

缺点:可靠性还没有被广泛验证,并且严重依赖时间,好的分布式系统应该是异步的,并不能以时间为担保,程序暂停、系统延迟等都可能会导致时间错误。

三、基于zookeeper实现的分布式锁

1. 实现方式

ZooKeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一个目录下只能有一个唯一文件名。基于ZooKeeper实现分布式锁的步骤如下:

  1. 创建一个目录mylock;

  2. 线程A想获取锁就在mylock目录下创建临时顺序节点;

  3. 获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获得锁;

  4. 线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点;

  5. 线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小的节点,如果是则获得锁。

这里推荐一个Apache的开源库Curator,它是一个ZooKeeper客户端,Curator提供的InterProcessMutex是分布式锁的实现,acquire方法用于获取锁,release方法用于释放锁。

优点:具备高可用、可重入、阻塞锁特性,可解决失效死锁问题。

缺点:因为需要频繁的创建和删除节点,性能上不如Redis方式。

2. 两种利用特性实现原理:

1、利用临时节点特性

zookeeper的临时节点有两个特性,一是节点名称不能重复,二是会随着客户端退出而销毁,因此直接将key作为节点名称,能够成功创建的客户端则获取成功,失败的客户端监听成功的节点的删除事件

缺点:所有客户端监听同一个节点,但是同时只有一个节点的事件触发是有效的,造成资源的无效调度

2、利用顺序临时节点特性

zookeeper的顺序临时节点拥有临时节点的特性,同时,在一个父节点下创建创建的子临时顺序节点,会根据节点创建的先后顺序,用一个32位的数字作为后缀。

我们可以用key创建一个根节点,然后每次申请锁的时候在其下创建顺序节点,接着获取根节点下所有的顺序节点并排序,获取顺序最小的节点,如果该节点的名称与当前添加的名称相同。

则表示能够获取锁,否则监听根节点下面的处于当前节点之前的节点的删除事件,如果监听生效,则回到上一步重新判断顺序,直到获取锁。

总结

基于数据库分布式锁实现

优点:直接使用数据库,实现方式简单。

缺点:

  1. db操作性能较差,并且有锁表的风险

  2. 非阻塞操作失败后,需要轮询,占用cpu资源;

  3. 长时间不commit或者长时间轮询,可能会占用较多连接资源

基于redis缓存

  1. redis set px nx + 唯一id + lua脚本

优点:redis本身的读写性能很高,因此基于redis的分布式锁效率比较高

缺点:依赖中间件,分布式环境下可能会有节点数据同步问题,可靠性有一定的影响,如果发生则需要人工介入

  1. 基于redis的redlock

优点:可以解决redis集群的同步可用性问题

缺点:

  1. 依赖中间件,并没有被广泛验证,维护成本高,需要多个独立的master节点;需要同时对多个节点申请锁,降低了一些效率

  2. 锁删除失败 过期时间不好控制

  3. 非阻塞,操作失败后,需要轮询,占用cpu资源;

基于zookeeper的分布式锁

优点:不存在redis的超时、数据同步(zookeeper是同步完以后才返回)、主从切换(zookeeper主从切换的过程中服务是不可用的)的问题,可靠性很高

缺点:依赖中间件,保证了可靠性的同时牺牲了一部分效率(但是依然很高)。性能不如redis。

jdk的方式不太推荐。

  1. 从理解的难易程度角度(从低到高)数据库 > 缓存 > Zookeeper

  2. 从实现的复杂性角度(从低到高)Zookeeper >= 缓存 > 数据库

  3. 从性能角度(从高到低)缓存 > Zookeeper >= 数据库

  4. 从可靠性角度(从高到低)Zookeeper > 缓存 > 数据库

没有绝对完美的实现方式,具体要选择哪一种分布式锁,需要结合每一种锁的优缺点和业务特点而定。


TopTop